В начальном курсе математике понятие «задача»  обычно используется тогда, когда речь идет об арифметических задачах. Они формируются в виде текста, в котором находят отражение количественные отношения между реальными объектами. Поэтому их называют «текстовыми», « сюжетными», «вычислительными» или «практическими».

        Начальный курс математики ставит основной целью научить младших школьников решать задачи арифметическим методом, который сводится к выбору арифметического действия или действий, моделирующих связи между данными и искомыми величинами. Оно оформляется в виде последовательности числовых равенств или выражением, к которым даются пояснения.

Определение составной задачи.

        Задача, для решения которой надо выполнить несколько действий, связанных между собой, называется составной задачей. Она включает в себя ряд простых задач. Связанных между собой так что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению ее на ряд простых задач и к последовательному их решению.

Работа над условием составной задачи.

        В подготовительный период перед знакомством с составной задачей одной из форм работы является решение простых задач. Простые задачи являются составными частями одного из способов  введения составных задач.

        Решение составной задачи всегда начинается знакомством с условием и вопросом к ней. Пока дети не научатся читать бегло, условие  и вопрос  к нему рассказывает или прочитывает учитель. Но когда дети овладели навыком беглого чтения, тогда целесообразно предлагать читать задачи одному из учеников; а в некоторых случаях всем ученикам про себя. В процесс чтения входит не только произношение вслух или про себя слов текста, но и осмысление содержания прочитанного так, чтобы после чтения передать содержание, не пропуская ни одного существенного элемента.

        Если в тексте задачи встречаются незнакомые детям слова или выражения, то рекомендуется разъяснить их значение до начала чтения.

        Повторять чтение текста задачи следует как можно реже, когда, например, при первом чтении текст ошибочно искажен. Детей полезно приучать запоминать содержание задачи после одного чтения, чтобы не расходовать время на повторное чтение. Если условие задачи учащиеся поняли недостаточно хорошо, то задачу можно повторить по вопросам учителя, а затем в виде связного пересказа содержания ее повторяет один из учеников.

Формы краткой записи условий задачи.

        После ознакомления с содержанием задачи можно приступить к поиску ее решения.

        При введении задач нового типа поиском решения руководит учитель, а затем учащиеся выполняют это самостоятельно. В том и другом случае используются  специальные приемы, которые помогают детям вычленить величины, данные и искомые числа, установить связи между ними. К таким приемам относятся и иллюстрация задачи.

 Наряду с предметной иллюстрации, начиная с 1 класса, используется и схематическая – это краткая запись условия задачи. В краткой записи фиксируются в удобооброзримой форме величины, числа данные и искомые, а также некоторые слова, показывающие, о чем говорится в задаче: «было», «улетело», «осталось», и т.п., и слова обозначающие отношения: «больше», «меньше» и т.п., и слова, указывающие на величины, данные в условии задачи: «скорость», «время», «расстояние» и другие.

        Для того, чтобы краткая запись в максимальной степени способствовала решению задачи, нужно:

        1).    Краткую запись составлять на основе анализа текста задачи;

        2).    В краткой записи должно быть минимальное количество условных обозначений;

        3). Количество вопросительных знаков в краткой записи должно соответствовать количеству действий в задачи;

        4).    Форму краткой записи выбирать такую, чтобы она более наглядно представляла условие задачи.

        Краткую запись задачи можно выполнять в виде опорной схемы, таблицы, чертежа, с помощью геометрических фигур.

Способы анализа задачи.

        В формировании умения решать текстовые задачи велика роль правильно организованного разбора задачи. В методике обычно говорят о двух способах проведения такой работы: о разборе от данных к искомым значениям и, наоборот. От искомых (вопроса задачи) к данным (известным) значениям. Первый называется синтетическим, второй – аналитическим. Возможна их комбинация – аналитико-синтетический способ рассуждений.

Составление задач по краткой записи.

        Составление задач по краткой записи – важный этап  в работе над составной задачей и отработке навыков решения ее. Эту работу надо начинать еще при работе над простой задачей  и параллельно с записью краткого условия задачи. Сначала рекомендуется научить составлять краткое условие составной задачи, решать ее, затем предложить аналогичную краткую запись, но с другими числами и попросить сформулировать задачу, аналогичную данной. Затем постепенно, работая над составлением задач, менять формы краткой записи условия задачи и исключать предварительную работу с заданной задачей и ее краткой записью.

Пояснения к решению задач.

        Эта форма работы над составной задачей предусматривает проверку умения учащихся по данным действиям решения задачи пояснить, на какой вопрос и с какой целью отвечает действие. Она может быть использована при первоначальном закреплении решения задач, при индивидуальной работе, как со слабыми, так и сильными учениками, при разборе нового способа решения задачи, который не предложил ни один ученик. Такая форма работы помогает учащимся увидеть другие отношения, вести необходимую цепочку логических  рассуждений, анализировать и делать выводы.

        Овладение основами математики немыслимо без решения и разбора задач, что является одним из важнейших звеньев в цепи познания математики. Этот вид занятий не только активизирует изучение математики, но и прокладывает пути к глубокому пониманию ее. Работа по осознанию хода решения той или иной математической задачи дает импульс к развитию мышления ученика. Кроме того, нельзя забывать, что решение задач воспитывает у детей многие положительные качества характера и развивает их эстетически.